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Abstract

To evaluate the impact of respiratory motion on attenuation
correction of cardiac PET data, we acquired and automatically
segmented gated transmission data for a dog breathing on its
own under gas anesthesia.

Data were acquired for 20 min on a CTI/Siemens ECAT
EXACT HR (47-slice) scanner configured for 12 gates in a
static study. Two respiratory gates were obtained using data
from a pneumatic bellows placed around the dog’s chest,
in conjunction with 6 cardiac gates from standard EKG
gating. Both signals were directed to a LabVIEW-controlled
Macintosh, which translated them into one of 12 gate
addresses. The respiratory gating threshold was placed
near end-expiration to acquire 6 cardiac-gated datasets at
end-expiration and 6 cardiac-gated datasets during breaths.
Breaths occurred about once every 10 sec and lasted about
1-1.5 sec.

For each respiratory gate, data were summed over
cardiac gates and torso and lung surfaces were segmented
automatically using a differential 3-D edge detection algorithm.
Three-dimensional visualizations showed that lung surfaces
adjacent to the heart translated 9 mm inferiorly during breaths.

Our results suggest that respiration-compensated
attenuation correction is feasible with a modest amount
of gated transmission data and is necessary for accurate
quantitation of high-resolution gated cardiac PET data.

I. I NTRODUCTION

Over the past 20 years, the spatial resolution attainable by
positron emission tomography (PET) systems has improved
dramatically. With this improved resolution, there is the
potential to obtain detailed maps of myocardial perfusion and
metabolism. However, this potential remains largely unfulfilled
since current data acquisition and analysis strategies do not
account for the respiratory and contractile motion of the
heart, which has an amplitude more than twice the 4-5 mm
resolution of contemporary commercial scanners. While the
resulting blurred images are reasonable qualitative estimates
of the left ventricular myocardial activity, they fall far short
of the high-resolution quantitative images that are potentially
attainable with modern PET systems.

The effects of respiratory motion of the heart have been
virtually ignored in cardiac emission tomography, although the
problem has been recognized and was described in 1982 [1].
Respiratory motion of the diaphragm and heart has been

estimated to be approximately 15 mm in a human in the supine
position during tidal breathing [2, 3]. The effects of gross
patient motion have been studied, particularly with respect
to the misalignment that often results between transmission
and emission data in PET [4, 5, 6]. A 20 mm patient motion
between transmission and emission scans produced changes of
up to 30% in regional myocardial activity estimates [5].

In order to compensate for the motion of the heart, we
have developed methods for separating events during both
transmission and emission data acquisition according to
respiratory and electrocardiogram (EKG) cues. Thus, emission
data can be analyzed using properly registered attenuation
correction factors (ACFs).

When data acquired during a typical 20 min transmission
study are separated into multiple respiratory states, however,
the resulting ACFs for each state are noisy due to relatively low
counting statistics. To obtain less noisy ACFs, techniques have
been developed to segment noisy transmission images into
air, soft tissue, and lung based on semi-automatic differential-
based 2-D edge detection [7], automatic threshold-based
pixel classification [8, 9, 10], and neural network pattern
classification [11] . This patient segmentation typically is
smoothed with a Gaussian to obtain a map with resolution
comparable to the emission data, and is then combined
with a map for the tomograph bed obtained from a separate
high-statistics transmission study performed without the patient
in the scanner. The combined map is then forward-projected to
obtain less noisy ACFs.

To supplement these techniques, we have developed
efficient multi-scale differential 3-D image processing
techniques which automatically create time-varying geometric
models of the torso and lung surfaces from respiratory-gated
transmission data. A pixel can first be classified according
to which surface (if any) most immediately encloses the
pixel during a given respiratory state and then be assigned an
appropriate attenuation coefficient.

II. H ARDWARE GATING

In collaboration with CTI Inc., we modified the software
and hardware of our CTI/Siemens ECAT EXACT HR
(47-slice) tomograph to support prospective cardiac and
respiratory gating. The modified tomograph front panel accepts
four TTL inputs which encode a desired acquisition gate. As
these inputs change, tomograph events are directed to one of
up to 12 different transmission data buffers in memory, where
each buffer represents the data from the 47 2-D slices acquired
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for that gate. Up to 16 different buffers can be used for gated
emission data acquisition.

To supply the appropriate 4-bit gating address to the
scanner, we implemented a hardware and software front
end. The front end characterizes the cardiac and respiratory
state of the subject being imaged from external analog cues
using the LabVIEW real-time environment on a Macintosh
workstation, as well as custom analog signal processing
hardware. The cardiac signal is derived from standard EKG
monitors. This analog EKG signal is directed to signal
processing hardware which generates a pulse at each R-wave.
Respiratory monitoring is achieved using a pneumatic bellows
originally designed for magnetic resonance image (MRI)
scanners (General Electric part number E8811ED: Bellows
Assembly for Respiratory Compensation Packages). The
bellows is secured around the patient’s chest, and the analog
signal from a pressure transducer connected to the bellows is
amplified and input along with the R-wave pulse to a National
Instruments NB-MIO-16 data acquisition board resident in
the Macintosh. The Macintosh samples the signals, typically
at 10 Hz for the respiratory input, and at over 600 Hz for the
cardiac input. For each sample, a respiratory state is set based
upon the absolute amplitude of the pressure transducer signal,
and the cardiac state is set based upon the time since the last
R-wave. The cardiac and respiratory states are used to select
an output gating state from a 2-D lookup table. This state
is encoded by the National Instruments board as four binary
outputs and directed to the ECAT scanner.

Using this gating configuration with two respiratory gates
and six cardiac gates, a 20 min transmission scan was acquired
for a dog breathing on its own under gas anesthesia. Only two
respiratory gates were chosen because the anesthetized dog
remained in the expiration state about 85-90% of the time,
taking only occasional, relatively shallow, quick breaths. The
heart rate of the dog was approximately 115 beats per min,
and cardiac gates were set to 60 msec intervals starting at the
R-wave.

III. A UTOMATED 3-D TRANSMISSIONIMAGE

SEGMENTATION

Our gated transmission image analysis is based upon a body
of work which has sought to improve image segmentation by
combining estimates of the differential properties of an image
with knowledge about the expected contrast between structures
and the expected locations, shapes, and sizes of the structures
of interest.

Candidate boundaries for structures of interest have been
constructed by linking together points in a dataset where
the image intensity is changing rapidly. Points of locally
maximum (or near-maximum, based on other constraints)
estimated image gradient vector magnitude have been
linked [12, 13, 14, 15, 16, 17], as have zero-crossing points
obtained in response to a second-order differential operator
such as the Laplacian or the second derivative in the direction
of the gradient [18, 19, 20, 21, 22, 23]. The medial axes and
widths of structures have been extracted by pairing boundary

points on opposite sides of the structures, using first- and
second-order differential operators [24]. Other geometric
primitives, such as n-junctions, have been extracted using
higher-order differential operators [25]. Typically, these
operators are composed of Gaussian derivative kernels, which
smooth the data prior to performing differentiation. The
Gaussian scale parameter (standard deviation)σ is varied
systematically to optimize the response of the operator
with respect to the size and detail of the structures of
interest [26, 27, 21].

As the size of medical image datasets continues to grow,
computational efficiency becomes more of an issue, particularly
with multi-scale processing techniques. Starting with a 3-D
dataset, processing each spatial axis of the data independently
at just two scales increases the total amount of data processed
by a factor of23 = 8. As a more computationally efficient
alternative to Gaussian derivative filtering, we and others have
been investigating the use of wavelet kernels based on the
uniform B-spline basis function. The uniform B-spline has
scaling properties that allow an implementation of filter kernels
with geometrically increasing standard deviationσ, using fixed
computation at each scale [28, 29]. By comparison, iteratively
filtering with the same Gaussian results in only a sub-linear
increase inσ for a fixed amount of computation. Thekth-order
uniform B-spline basis function,Π∗k(x), is the piecewise
(k − 1)st-degree polynomial that is obtained by convolving the
rectangle function

Π(x) =
{

1, − 1
2 ≤ x ≤ 1

2
0, else

(1)

with itself k − 1 times. The Gaussian is obtained in the limit as
the orderk approaches infinity.

Using wavelet filter kernels derived from the uniform cubic
B-spline basis function,Π∗4(x), we implemented a 3-D edge
detection operator that estimates the second derivative in the
gradient direction, weighted by the squared magnitude of the
gradient:
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where x1, x2, and x3 denote the spatial coordinates. For
convenience, we will also denote these coordinates byx, y,
and z, respectively. In 2-D, the second directional derivative
operator has been shown to perform better than the Laplacian,
∇2f , under a variety of conditions [19, 30].

The first- and second-order partial derivatives of each
respiratory-gated transmission dataset were calculated
efficiently at multiple spatial scales by convolving with
the wavelet filter kernels. Then, candidate anatomical
surfaces were constructed by linking together zero-crossing
points in the second directional derivative operator output
(Equation 2), using an approach similar to Wallin [31]. In
our implementation, zero-crossing points for each respiratory
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Fig. 1 Upper, Middle: Transverse respiratory-gated canine transmission images superimposed with cross-sections of torso and lung surface
models constructed automatically using the 3-D second directional derivative operator (upper left: end-expiration, 11×11×7 operator; upper
right: during breaths, 11×11×7 operator; middle left: end-expiration, 23×23×15 operator; middle right: during breaths, 23×23×15 operator).
Lower: Inferior views of canine torso and lung surface models constructed automatically using the 23×23×15 operator (lower left: end-
expiration; lower right: during breaths). The dog is lying on its right side.

state were first linked together to form spatial contours in
the xy (transverse),xz (coronal), andyz (sagittal) image
planes. Surfaces were then constructed by linking together the
contours. Information about the centroid, bounding box, and
average image intensity gradient across each of the contours, as
well as each of the surfaces, was stored to facilitate higher-level
image analysis.

Each respiratory-gated transmission dataset was composed
of 47 contiguous 3.125 mm-thick transverse images. Each
transverse image was 128×128 pixels, with pixel size
2.5×2.5 mm. Due to the infrequent shallow breathing of the
dog, the length of the data acquisition during breaths totaled

only about 2-3 min, while the length of the data acquisition
during end-expiration totaled about 17-18 min. A 3×3 pixel
gray-scale morphological opening operator was applied to each
transverse image to reduce noise, while preserving intensity
transitions associated with tissue boundaries [32].

We then processed each 128×128×47 dataset using the 3-D
second directional derivative operator (Equation 2). Surfaces
were constructed automatically after discarding the results
from the first and last four transverse sections, which were
excessively noisy due to boundary effects at the ends of the
tomograph. We experimented with a number of different
wavelet filter kernel sizes. Figures 1 and 2 show the results of
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Fig. 2 Upper: Left-lateral views of canine lung surface models constructed automatically using the 23×23×15 second directional derivative
operator (upper left: end-expiration; upper right: during breaths). Lower: Anterior views of canine lung surface models constructed
automatically using the 23×23×15 operator (lower left: end-expiration; lower right: during breaths). The dashed lines show that the diaphragm
translated 9 mm inferiorly during breaths. The solid lines show the position of the transverse images shown in Figure 1.

processing using kernels with supports 11×11×7 pixels (along
the x, y, and z axes, respectively) and 23×23×15 pixels.
Figure 2 shows that the diaphragm translated 9 mm inferiorly
during breaths.

Processing with the 11×11×7 kernels resulted in
reasonably accurate torso and lung surface models, as
well as some smaller-scale structures due to image noise.
Processing with the 23×23×15 kernel resulted in less accurate
torso and lung surface models, while eliminating most of
the smaller-scale noise structures. With either kernel size,
the relatively large, high-contrast, cross-sectional contours
associated with the torso and lung surfaces could be identified
easily by using the information stored about the centroid,
bounding box, and average image intensity gradient across
each of the contours. For a given wavelet filter kernel size,
the 3-D differential image processing and automated surface
construction took about 1.7 min for each respiratory state, on a
Silicon Graphics 100 MHz R4000-based Unix workstation.

IV. SEGMENTED ATTENUATION CORRECTION

Having time-varying geometric models for the torso and
lung surfaces, one can assign an attenuation coefficient to a
volume element (voxel) according to which surface (if any)
most immediately encloses the voxel during a given respiratory
state. For voxels outside the chest one can assign a constant

coefficient of zero, and for voxels inside the chest and outside
the lungs one can assign a constant coefficient appropriate for
tissue. Because attenuation within the lungs varies significantly
between patients, as well as spatially and with respiratory state,
attenuation coefficients inside the lungs can be assigned based
on local 3-D averages of voxels completely inside the lungs.
A voxel straddling a surface can be assigned an appropriate
coefficient based on the relative volumes of materials contained
within the voxel. In addition, an attenuation map is needed
for the bed. This map can be obtained from a separate
high-statistics transmission study performed without the patient
in the scanner.

V. CONCLUSIONS

A strength of our automated multi-scale differential image
processing techniques is that data are analyzed efficiently in
3-D over appropriate spatial scales in an effort to extract and
to physically model the time-varying surfaces which bound
the torso and lungs. Our structured analysis imposes spatial
continuity constraints that complement the information that
is available from unstructured image pixel gray-level value
alone. Using these methods we obtained good segmentations
of images reconstructed from gated transmission data obtained
with as little as 3 minutes of acquisition time per gate.

We have embarked on full 4-D structured analysis of gated
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human transmission data. Because an awake human breathes
more regularly than does an anesthetized dog, sufficient data
can be acquired during the intermediate respiratory states to
facilitate tracking the more continuously varying motion of
the diaphragm and heart. By processing in 4-D the data that
we can acquire using 4-5 respiratory gates, we expect that the
additional temporal continuity constraint will aid the extraction
and tracking of the torso and lung surfaces across space and
time.
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